2013-03-07 10:19:09 河南选调生考试网 //ha.huatu.com/xds/ 文章来源:华图教育
【导读】华图河南选调生考试网同步华图教育发布:2013河南选调生考试行测辅导:同余问题中的剩余定理,详细信息请阅读下文!如有疑问请加【河南选调生考试交流群汇总】 ,更多资讯请关注河南华图微信公众号(hnhuatu),微信号:(hnht678) 。备考选调生考试,为你推荐选调生用书|课程。
推荐:河南选调生备考专题 河南选调生考试培训课程 QQ交流群:105527906
2013年河南全省公职考试信息汇总 订阅手机报:网罗所有招考信息、考试资料
包邮仅39.9元可抢华图千元大礼包【含全新图书+学习卡+手机报等】
余数问题中的一个重要问题就是同余问题,在同余问题解决过程中,华图公务员考试研究中心推荐代入法和口诀法两大类。其中口诀法是公倍数做周期,余同取余,和同加和,差同减差的应用,但是有时候会出现余不同,和不同并且差也不同的现象,这就需要我们采用剩余定理进行解决。
剩余定理的原理是在“孙子问题”现代数论中的一个一次同余问题,它早出现在我国公元四世纪的数学著作《孙子算经》中。《孙子算经》卷下“物不知数”题说:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?显然,这相当于求不定方程组
N=3x+2,N=5y+3,N=7x+2
的正整数解N,或用现代数论符号表示,等价于解下列的一次同余组:
N 2(mod3) 3(mod5) 2(mod7)②
《孙子算经》所给答案是N=23。由于孙子问题数据比较简单,这个答数通过试算也可以得到。但是《孙子算经》并不是这样做的。“物不知数”题的术文指 出解题的方法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。将诸乘积相加,然后减去一百 零五的倍数。列成算式就是:
N=70×3+21×3+15×2-2×105。
这里105是模数3、5、7的小公倍数,容易看出,《孙子算经》给出的是符合条件的小正整数。对于一般余数的情形,《孙子算经》术文指出,只要把 上述算法中的余数2、3、2分别换成新的余数就行了。以R1、R2、R3表示这些余数,那么《孙子算经》相当于给出公式
N=70×R1+21×R2+15×R3-P×105(p是整数)。
孙子算法的关键,在于70、21和15这三个数的确定。后来流传的《孙子歌》中所说“七十稀”、“廿一枝”和“正半月”,就是暗指这三个关键的数字。《孙子算经》没有说明这三个数的来历。实际上,它们具有如下特性:
也就是说,这三个数可以从小公倍数M=3×5×7=105中各约去模数3、5、7后,再分别乘以整数2、1、1而得到。假令 k1=2,K2=1,K3=1,那么整数Ki(i=1,2,3)的选取使所得到的三数70、21、15被相应模数相除的时候余数都是1。由此出发,立即可 以推出,在余数是R1、R2、R3的情况下,
综合以上三式又可得到
因为M=3×5×7可被它的任一因子整除,于是又有:
这里P是整数。这就证明了《孙子算经》的公式。应用上述推理,可以完全类似地把孙子算法推广到一般情形:设有一数N,分别被两两互素的几个数a1、a2、……an相除得余数R1、R2、……Rn,即
N≡Ri(modai)(i=1、2、……n),
只需求出一组数Ki,使满足
那么适合已给一次同余组的小正数解是
(P是整数,M=a1×a2×……×an),这就是现代数论中的剩余定理。如上所说,它的基本形式已经包含在《孙子算经》“物不知数”题的解法之中。不过《孙子算经》没有明确地表述这个一般的定理。
剩余定理的原理比较繁琐,不如直接套用解题方法进行快速解题更能解决行测中的类似问题。下面给出一些例题,对剩余定理的解题方法加以熟练:
【例1】一个数被3除余1,被4除余2,被5除余4,这个数小是多少?
【解析】题中3、4、5三个数两两互质。
则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
为了使20被3除余1,用20×2=40;
使15被4除余1,用15×3=45;
使12被5除余1,用12×3=36。
然后,分别乘以他们的余数:40×1+45×2+36×4=274,
因为,274>60,所以,274-60×4=34,就是所求的数。
【例2】一个数被3除余2,被7除余4,被8除余5,这个数小是多少?
在1000内符合这样条件的数有几个?
【解析】题中3、7、8三个数两两互质。
则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
为了使56被3除余1,用56×2=112;
使24被7除余1,用24×5=120;
使21被8除余1,用21×5=105;
然后,112×2+120×4+105×5=1229。
因为,1229>168,所以,1229-168×7=53,就是所求的数。
再用(1000-53)/168得5, 所以在1000内符合条件的数有5个。
【例3】一个数除以5余4,除以8余3,除以11余2,求满足条件的小的自然数。
【解析】题中5、8、11三个数两两互质。
则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
为了使88被5除余1,用88×2=176;
使55被8除余1,用55×7=385;
使40被11除余1,用40×8=320。
然后,176×4+385×3+320×2=2499,
因为,2499>440,所以,2499-440×5=299,就是所求的数。
【例4】有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人 ?
【解析】题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;
使45被7除余1,用45×5=225;
使63被5除余1,用63×2=126。
然后,280×5+225×1+126×2=1877,
因为,1877>315,所以,1877-315×5=302,就是所求的数。
对剩余定理问题进行直接套用的方式是解决此类题目快的方法,华图公务员考试研究中心希望考生记住解题步骤,进行相关问题的解决。
华图教育 田莹
以上是2013河南选调生考试行测辅导:同余问题中的剩余定理的全部内容,更多关于河南选调生考试,行测辅导,行测备考快讯信息敬请关注河南选调生考试网频道。
本文标签: (编辑:admin)微信公众号
贴心微信客服
华图教育官方微信
华图总部:北京华图宏阳教育文化发展股份有限公司
联系电话:010-68296100
联系地址:北京市海淀区复兴路甲23号
华图分校:河南华图郑州黄河路交卫生路向北三叉口东50米路北华图教育培训基地
(红旗路交卫生路东50米路北)
客服热线:0371-87096515