2021-08-31 17:57:05 河南教师招聘网 //ha.huatu.com/jiaoshi/ 文章来源:河南华图
【导读】华图河南教师考试网同步河南华图发布:数学思想方法大盘点(二),详细信息请阅读下文!如有疑问请加【河南教师考试交流群汇总】 。备考河南省教师招聘考试,为你推荐备考用书招教用书。特岗用书面授课程。更多资讯请关注河南华图教师微信公众号(htzhaojiao) 。
数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题,通常混称为“数学思想方法”。数学思想方法是数学基础知识的重要组成部分,教材中没有专门的章节介绍它,而是伴随着基础知识的学习展开。我们在学习中一定要重视对常用数学思想方法的总结与提炼,它们是数学知识的精髓,是解题的指导思想,使人受益终身。特别是对于招教考试笔试而言,许多题目都渗透这数学方法的应用,采用正确的数学思想方法进行解题,可以大大节省解题时间。本文列举了数学解题中常用的思想方法,并配以简单题目进行举例,方便大家的理解和应用。
一、函数与方程思想
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,要善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
方程思想是指在解决数学问题时,从分析问题的数量关系入手,分析已知量与未知量之间的制约和联系,通过布列方程和解方程将未知量转化为已知量,最终使问题获得解决的一种数学思想。
例:扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积。
分析:这是一个求长方体的体积问题,要解决它必须求出长方体的长、宽、高。由于题目中已给出三者之间的关系,因此可以通过设未知数列方程来求解。
以上是数学思想方法大盘点(二)的全部内容,更多关于教师资格笔试备考,学科知识备考快讯信息敬请关注河南教师考试网频道。
本文标签: (编辑:周小图)上一篇:如何攻破非谓语动词的出题套路?
下一篇:数学思想方法大盘点(一)
华图教育官方微信
华图总部:北京华图宏阳教育文化发展股份有限公司
联系电话:010-68296100
联系地址:北京市海淀区复兴路甲23号
华图分校:河南华图郑州黄河路交卫生路向北三叉口东50米路北华图教育培训基地
(红旗路交卫生路东50米路北)
客服热线:0371-87096515